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We demonstrate a spin pump to generate pure spin current of tunable intensity and polarization in the
absence of charge current. The pumping functionality is achieved by means of an ac gate voltage that modu-
lates the Rashba constant dynamically in a local region of a quantum channel with both static Rashba and
Dresselhaus spin-orbit interactions. Spin-resolved Floquet scattering matrix is calculated to analyze the whole
scattering process. Pumped spin current can be divided into spin-preserved transmission and spin-flip reflection
parts. These two terms have opposite polarization of spin current and are competing with each other. Our
proposed spin-based device can be utilized for nonmagnetic control of spin flow by tuning the ac gate voltage
and the driving frequency.

DOI: 10.1103/PhysRevB.78.245312 PACS number�s�: 73.23.�b, 73.21.Hb, 72.25.Dc, 72.30.�q

I. INTRODUCTION

Manipulation of electron spins can be achieved via apply-
ing external active control, which is the essential requirement
of spintronics devices.1 Especially, spin-resolved current
generation is one of the key interests in spintronics research
for its potential application in quantum information
science.2,3 Various approaches were proposed to overcome
the fundamental challenge in the issues of spin current
manipulation, detection, and injection efficiency. Methods
based on controlling magnetic field4–6 and material
ferromagnetism7 are investigated. However, for practical ap-
plications, more efficient methods that do not involve strong
magnetic field or interfaces between ferromagnets and semi-
conductors are still needed. Spin pumping can be a viable
solution to the spin current generation.8,9

Pumping of charge current is a fully quantum-mechanical
phenomenon in a mesoscopic system that can generate cur-
rent without applied bias between two leads. Theoretically
and experimentally, charge current pump has been realized
and implemented in a quantum channel or a cavity in the
way of periodic modulation.10–14 In the adiabatic regime,
Brouwer11 proposed a clear picture that the pumped current
depends on the enclosed area in parametric space which is
formed by a set of periodically varied parameters. Such for-
malism was readily extended to nonadiabatic regime, which
is valid in the whole spectrum of frequency.15 If the spin
degree of freedom is incorporated, spin-dependent transmis-
sion coefficients can be differentiated either directly by ex-
ternal magnetic field16,17 or by spin-orbit interaction.9,18 Spin
pumping is generalized from the quantum pumping and ex-
empted from the spin injection problem which occurs in the
integrated semiconductor-ferromagnet architecture.

In order to achieve spin pumping, a Rashba-type narrow
channel �which ignores the presence of the Dresselhaus term�
driven by local time-dependent potential was proposed.19,20

When electrons propagate through the potential region, qua-
sibound state feature was shown to enhance the spin-
resolved transmission difference so that sizable pure spin
current can be generated. However, since the Dresselhaus
spin-orbit interaction is an intrinsic effect in semiconductor
materials with bulk inversion asymmetry,21 it is essential to
take into account this effort when considering such a spin-
pumping device. It should be noted that the presence of the
Dresselhaus term will lead to the spin-flip mechanism which
can modify the spin-pumping characteristics in a qualitative
way. We shall elucidate the possibility to manipulate not only
the intensity but also the polarization of the spin current.
Recently, the spin-orbit interaction has been utilized for spin
filtering applications.22–24 On the other hand, the quantum-
dot based spin pumping with Rashba and Dresselhaus spin-
orbit interactions was investigated within the adiabatic
approximation.25

In this paper, the spin-resolved Floquet scattering matrix
formalism is applied to our system.26,27 Based on the Floquet
theorem, this formalism provides an exact and nonperturba-
tive solution to the time-periodic Schrödinger equation in the
mesoscopic system. Because the time-dependent spin-orbit
interaction couples two spin polarizations and all sidebands
together, analytic expression for the sideband dispersion is
not feasible. Thus, we determine the sideband dispersion re-
lation numerically by solving the Schrödinger equation in a
nearly complete basis. Besides, the spatial inhomogeneity
can also be handled by matching boundary conditions piece
by piece spatially. The Floquet scattering matrix gives a co-
herent solution that goes beyond the adiabatic regime.

II. MODEL AND FORMALISM

The system under consideration is a two-dimensional
electron gas �2DEG� that is present at the interface of a het-
erostructure due to modulation doping and has intrinsic static
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Rashba and Dresselhaus spin-orbit interactions. The system
configuration is shown in Fig. 2. A quasi-one-dimensional
�Q1D� narrow channel is formed from the 2DEG via a lateral
confining potential �along the y direction�. The barrier sepa-
rating the Q1D channel from the 2DEG should be strong
enough so the tunneling time between them is much longer
than the carrier transport time in the Q1D channel. A finger
gate is placed in the middle of the channel �the gray region in
Fig. 1� that modulates the local Rashba interaction strength
sinusoidally via an ac bias. Hence, the system can be de-
scribed by the effective Hamiltonian

Ĥ =
p̂2

2m�
+ Ĥso

static + Ĥso�r,t� + V̂c�y� , �1�

where m� denotes the electron effective mass and V̂c�y� in-
dicates the confinement potential in transverse �y� direction.

Ĥso
static and Ĥso�r , t� characterize, respectively, the static and

dynamic parts of spin-orbit interaction. If we consider a nar-
row quantum channel where the subband energy spacing is
large enough to decouple p̂y from spin-orbit interaction, the
intersubband mixing is thus neglected.19,20 The longitudinal
part of the dimensionless Hamiltonian is then given by

Ĥx
0 = k̂x

2 − �0�yk̂x + �0�xk̂x,

Ĥx�t� = −
1

2
�1�y cos��t��k̂x,��l/2 − �x − l/2��� , �2�

where �i�i= �x ,y ,z�� denotes Pauli matrices and k̂x indicates
the momentum operator −i�x. Anticommutator �¯� is used to

maintain the hermitianity of Ĥx�t�. The static Rashba
strength �0 is proportional the electric field perpendicular to
the interface where 2DEG lies. Additionally, �0 is the phe-
nomenological Dresselhaus coupling parameter. In the finger
gate region, the Rashba parameter oscillates sinusoidally
with amplitude �1. For simplicity, we restrict the subsequent
discussions to the lowest subband and ignore the subband
index. The contributions from other subbands can be added if
a more realistic consideration is needed.

To proceed, it is convenient to rotate the spin-quantization

axis such that Ĥx
0 is diagonalized. The transformed Hamil-

tonian is

Ĥx�
0 = k̂x

2 − �0�zk̂x, �3�

Ĥx��t� = −
1

2
�1�	 cos��t��k̂x,��l/2 − �x − l/2��� , �4�

where �	= ��z sin 	−�y cos 	�, �0=��0
2+�0

2, and

	=arctan��0 /�0�. Ĥx�
0 illustrates not only our choice of

spin-up and spin-down states but also that the location of
subband bottom is at −�0

2 /4. Based on Floquet theorem, the
wave functions in lead L �x
0� and lead R �x� l� are given
by

�L�x,t� = �
m,�

�am,�eikm,�
R x + am,�� eikm,�

L x�e−i�+m��t��,

�R�x,t� = �
m,�

�bm,�eikm,�
R x + bm,�� eikm,�

L x�e−i�+m��t��, �5�

where �� denotes the spinor basis and  represents the
incident energy. The sideband index m runs essentially
for all integers. From the dispersion relation in Eq. �3�,
km,�

R and km,�
L are 1

2 ����0+��0
2+4�+m��	 and

1
2 ����0−��0

2+4�+m��	 respectively, where �� is defined
as ���,��

z . am,� �am,�� � is the amplitude of the rightward �left-
ward� wave in the mth sideband with spin � in lead L. Simi-
larly, bm,� �bm,�� � is for lead R. Technically, these amplitudes
are determined by boundary condition and the direction of
incident wave.

In the time-dependent region M �0
x
 l�, the general
solution would be

�M�x,t� = �
m,�

�m,��x�e−i��+m��t��, �6�

where � is the Floquet quasienergy. �m,��x� is solved from
Schrödinger’s equation,

�
��


�k̂x
2 − �0k̂x���,���

z ��m,�� −
�1k̂x

2
���,���

	 ��m+1,��

+ �m−1,���� = �� + m���m,�. �7�

These coupled equations can be expressed in matrix form,

k̂x
2� + k̂xH

�1�� = H�0�� , �8�

where

H�m,���m�,���
�1� = −

�1

2
���,���

	 ��m,m�+1 + �m,m�−1� − �0���,���
z

�m,m�,

�9�

H�m,���m�,���
�0� = �� + m���m,m���,��, �10�

�m,� = �m,��x� . �11�

FIG. 1. Schematic illustration of the quasi-1D spin-orbit quan-
tum channel embedded in 2DEG. In this narrow channel, the elec-
tron gas has static Rashba and Dresselhaus spin-orbit interactions
which are characterized by �0 and �0, respectively. The central gray
region, with width l, is biased by ac gate voltage so that Rashba
strength locally modulated as �1 cos��t�. The origin of x axis is set
at the left edge of the gray region.
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Because this is a transport problem, we have to solve the
eigenvalue q for fixed �. This quadratic eigenproblem can be
solved by introducing another of auxiliary equation ��
=q�. Then Eq. �8� becomes

� 0 1

H�0� − H�1� � �

��
 = q� �

��
 . �12�

If we truncate the sideband index m at −M /2 and M /2,
where M is an even integer, the eigenvalues qj and eigenvec-
tors �m,�

j are numerically determined from the above secular
equation.

Because Hamiltonian in Eq. �2� preserves time-reversal
symmetry, any qj is associated with −�qj��, i.e.,
��qj�=��−�qj��	. In addition, for Hamiltonian is also invari-
ant under inversion followed by spin flip, qj has its another
counterpart −qj. Thus, we can definitely sort the �4M +4�
complex eigenvalues into two groups.

For the case of evanescent modes, those right-decaying
waves are characterized by positive Im�qj�; left-decaying
waves have negative Im�qj�. On the other hand, for the case
of propagating modes that have real qj, we sort qj with posi-
tive �negative� group velocity to be rightward �leftward�
propagating waves. The group velocity is determined by
�d� /dqj�.28 Therefore, the wave function in region M is
given by

�m,��x� = �
j

�gj�m,�
j,R eiqj,Rx + gj��m,�

j,L eiqj,Lx� , �13�

where superscripts R and L are added to indicate the propa-
gating or decaying direction.

Wave functions are matched in the time domain by �=
and continuous across the boundaries. Their derivatives sat-
isfy the following boundary conditions:

�x��x,t��x=0+ − �x��x,t��x=0− =
i�1

2
cos��t��	��0,t� ,

�x��x,t��x=b− − �x��x,t��x=b+ =
i�1

2
cos��t��	��b,t� .

�14�

The above boundary conditions can be written down in ma-
trix form,

a + a� = SRg + SLg�, �15�

�KRa + KLa�� − �SRQRg + SLQLg��

=
1

2
�H�1� − �0���a + a�� , �16�

SReiQRlg + SLeiQLlg� = eiKRlb + eiKLlb�, �17�

�KRb + KLb�� − �SRQLeiQRlg + SLQLeiQLlg��

=
1

2
�H�1� − �0���eiKRlb + eiKLlb�� , �18�

where those column vectors a, g, and b are assigned values

from amplitudes am,�, gj, and bm,�, respectively. The above
�2M +2�� �2M +2� matrices SR�L�, QR�L�, �, and KR�L� have
matrix elements

S�m,��,j
R�L� = �m,�

j,R�L�,

Q j,j�
R�L� = � j,j�q

j,R�L�,

��m,���m�,��� = �m,m���,���− ��,↑ + ��,↓� ,

K�m,���m�,���
R�L� = �m,m���,�����,↑km,↑

R�L� + ��,↓km,↓
R�L�� . �19�

After some algebra, we have the following matrix equation
from Eqs. �15�–�18�:

�a�

b
 = �M11 M12

M21 M22
� a

b�
 . �20�

M= �
M11

M21

M12

M22
� denotes �4M +4�� �4M +4� matrix connect-

ing the input coefficients with output coefficients including
all propagating and evanescent Floquet sidebands.

In order to construct the Floquet scattering matrix, we
need to introduce the concept of probability flux amplitude
into M. We can straightforward define a new matrix as

M� = �VL 0

0 VR�M11 M12

M21 M22
�VR 0

0 VL−1

, �21�

where V�m,���m�,���
R�L� =�m,m���,��

��2km,�
R�L�−���0km,�

R�L��. In both
leads, VR�L� takes the form of diagonal matrix with the
square root of group velocity absolute value from each side-
band and spin type. It is worth to mention that M� is not
unitary yet due to the presence of evanescent modes. In the
final stage, we obtain a unitary Floquet scattering matrix by
setting the evanescent modes of the total scattering matrix
M� to be zero,

S = �R T�

T R�
 . �22�

The unitarity of Floquet scattering matrix reflects the current
conservation law,29,30 and is used as the criteria to check
numerical convergence.

The reflection and transmission coefficients are readily
obtained by summing over matrix elements of S. When elec-
trons that are incident from L lead with initial spin �i are
partially reflected and transmitted to final spin � f, the spin-
resolved reflection and transmission coefficients are written
as

R�f�i

LL ��� = �
m

�R�m,�f��0,�i�
�2, �23�

T�f�i

RL ��� = �
m

�T�m,�f��0,�i�
�2. �24�

On the contrary, if the electron is incident from lead R, this
gives rise to such reflection and transmission coefficients

R�f�i

RR ��� = �
m

�R�m,�f��0,�i�
� �2, �25�
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T�f�i

LR ��� = �
m

�T�m,�f��0,�i�
� �2. �26�

Under zero longitudinal bias, the spin-resolved current
pumped out through lead R is generally defined as

I↑
R =

e

h
� d�f����T↑↑

RL + T↑↓
RL + R↑↑

RR + R↑↓
RR − 1	 ,

I↓
R =

e

h
� d�f����T↓↑

RL + T↓↓
RL + R↓↑

RR + R↓↓
RR − 1	 , �27�

where f��� is Fermi-Dirac distribution. The spin-resolved
current can be derived based on the framework of Büttiker’s
formula31 by regarding two spin types as different terminal
channels. The generalization of Büttiker’s formula for Flo-
quet scattering matrix has been strictly proven.32,33 The spin
and charge currents at lead R are defined as Is

R= I↑
R− I↓

R and
Ic

R= I↑
R+ I↓

R. Because system Hamiltonian in Eq. �2� has inver-
sion followed by spin-flip symmetry, we can transform the
transmission and reflection coefficients as T�f�i

LR =T−�f−�i

RL and
R�f�i

RR =R−�f−�i

LL . Such transformation first guaranteed that there
is zero charge current in this system. Second, when certain
amount of spin current is pumped out at lead R, there should
be equal amount of spin current with opposite polarization
pumped out at lead L. Furthermore, if this symmetry is com-
bined with current conservation condition, spin current for-
mula can be simplified to a more convenient form in calcu-
lation,

Is
R =

2e

h
� d�f�����T↑↑

RL − T↓↓
RL� + �R↑↓

RR − R↓↑
RR�	 . �28�

The first two terms represent contributions from transmitted
electrons, and the last two terms are attributed to reflected
electrons whose spin is changed. Hence, we separate Is

R into
spin-preserved transmission and spin-flip reflection parts be-
cause their effects are different and discussed in the follow-
ing context. Thus,

Is
R = Is

R,trans + Is
R,refl. �29�

It should be noted that if there is no Dresselhaus term, the
Is

R,refl term is identically zero, and the Is
R is then reduced to

the same form in Ref. 19.

III. RESULTS AND DISCUSSION

Utilizing the above derived formula in Sec. II, it is easy to
calculate the spin current pumped from the spin-orbit quan-
tum channel via numerical means. The reasonable material
parameters are chosen from the narrow-gap heterostructure
based on InGaAs-InAlAs based system. According the ex-
perimental data, we assume that the 2DEG has an electron
density ne=1�1012 cm−2, effective mass m�=0.04m0, and
�0=0.12 ���0=2.8�10−11 eV m�.34 The ratio between
Rashba and Dresselhaus terms can vary in certain range due
to experimental difficulties.35 Thus, we examine the cases for
�0 /�0 varying between 0 and 1. In our calculations, the
length and energy units are chosen to be l�=4.0 nm and

E�=59 meV �the Fermi energy of the 2DEG�. We assume
that the ac-biased gate has a width of l=30l� and its driving
frequency is chosen as ��=0.002E� �� /2�=28 GHz�. The
bottom of the lowest-energy level �first subband� in the Q1D
channel is assumed to be slightly below the Fermi level, E�

of the 2DEG so that the Fermi energy relative to the bottom
of the first subband in the Q1D channel �denoted �F� is com-
parable to ��. All numerical results are obtained for zero
temperature.

The dependence of transmission and reflection coeffi-
cients on the incident electron energy ��� for various values
of �1 are illustrated in Figs. 2�a�–2�c� when the static Rashba
and Dresselhaus constants are the same, i.e., �0=�0. In order
to clarify the important features shown in these figures, we
redefine the energy zero at the bottom of the first subband
with the presence of Rashba and Dresselhaus terms, i.e.,

Ĥx�
0→Ĥx�

0+�0
2 /4. The coefficients T↑↑

RL, T↓↓
RL, R↑↓

RR, and R↓↑
RR,

which are needed for calculating Is
R, are plotted in Figs.

2�a�–2�c�. For transmission coefficients, we find sharp fea-
tures at integer values of � /�, indicative of the resonant
inelastic scattering. As �1 increases, the dip around � /�=1
moves toward lower energy, and the dip width is broadened.
The reason for the shift of dip location is that a stronger
oscillating potential would lower the real part of the quasi-
bound state energy and shorten the lifetime of electrons
trapped in such a state.29 When �1 is increased to 0.08 as
shown in Fig. 2�c�, a higher-order resonance seen as a shal-
low dip around � /�=2 becomes more apparent because of
the absorption and emission of two quanta �with energy
2���. The most significant effect of the Dresselhaus interac-
tion is the emergence of the spin-flip process, which leads to

FIG. 2. �Color online� Spin-resolved transmission and reflection
coefficients T↑↑

RL, T↓↓
RL, R↑↓

RR, and T↓↑
RR as functions of the incident

energy. The values of reflection coefficients are multiplied by 50 to
clarify the shape of the curves. �0=0.12, �0=�0, l=30, �=0.002,
and �1= �a� 0.04, �b� 0.06, �c� 0.08. The spin current, Is

R, which
depend on the Fermi energy for various �1 are plotted in �d�.
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appreciable spin-flip reflection coefficients, R↑↓
RR and R↓↑

RR. In
Figs. 2�a�–2�c�, R↑↓

RR and R↓↑
RR have a sawlike behavior with

peaks appearing at integer values of � /�, where electrons are
bounced back due to the presence of quasibound states. Al-
though their values are still minute compared with T↑↑

RL and
T↓↓

RL, they can lead to significant change in the final spin
current when we take differences of the spin-up and spin-
down contributions.

Figure 2�d� illustrates the spin current as a function of the
Fermi energy, �F �which reflects the carrier density in the
Q1D channel� for various values of �1. The curves in this
Figs. 2�a�–2�c� can be approximately divided into two parts:
the low-energy region �� /�
2� and high-energy region
�� /��2�. In the low-energy region, the reflection coeffi-
cients are too small compared to �T↑↑

RL−T↓↓
RL�, and Is

R is domi-
nated by the contribution due to transmission process �de-
noted Is

R,trans�. In the high-energy region, �R↑↓
RR−R↓↑

RR� becomes
stronger than �T↑↑

RL−T↓↓
RL� and the contribution to Is

R due to
reflection process �denoted Is

R,refl� becomes dominant. As �1
increases from 0.04 to 0.06, more spin current is pumped out
the first peak at �F /�=1 and into the second peak at
�F /�=2. When �1 is tuned even higher to 0.08, high-order
resonances become more relevant. Thus we have a further
enhanced peak around �F /�=2 and a reduced peak around
�F /�=1. However, because �R↑↓

RR−R↓↑
RR� is always negative,

Is
R,refl results in negative contribution to Is

R and it pulls the
spin current curves downward. For �F /��2, Is

R,refl becomes
dominant so that negative spin current is generated. As �1
increases, Is

R �for �F /��2� becomes more negative due to
higher probability of the spin-flip process.

In Fig. 3�a�, we focus on the effect of Dresselhaus inter-
action on the pumped spin current for a fixed �1. In the case
of zero �0, only one kind of spin polarization can be
pumped.19 As �0 increases, Is

R curves tend to shift downward
due to increased spin-flip scattering process. In the low-
density case ��F /�
2�, experimentally reasonable �0 may
hardly change the sign of Is

R. In the higher-density case
��F /��2�, the sign of Is

R is more vulnerable to the strength

of the Dresselhaus term. When �0 is 0.03, 0.06, and 0.12, the
threshold values of � at which the sign of Is

R starts to change
are at �F /�=4.89, 3.09, and 2.32, respectively.

A simple physical picture is presented here to give a con-
clusive explanation. The conditions in Fig. 3�b� are taken as

an example. Based on the dispersion relation of Ĥx�
0 in Eq.

�3�, when the electron is incident from lead L, �k0,↑
R � is always

larger than �k0,↓
L � for the same energy. Thus, it is easier for

spin-up electron to tunnel through this oscillating barrier due
its larger flux, i.e., this dispersion of static Hamiltonian tends
to favor T↑↑

RL rather than T↓↓
RL. On the other hand, because

scattering potential Ĥx�
1 can be approximately regarded as

proportional to momentum, spin-up electrons could be more
susceptible to the scattering process so that T↓↓

RL is favored
here. In low-energy region, these two mechanisms are com-
peting so that �T↑↑

RL−T↓↓
RL� may be positive or negative and

Is
R,trans has obvious peaks.

In high-energy region, because the second mechanism is
less relevant, only monotonically increasing Is

R,trans is present.
For Is

R,refl, the situation is just on the opposite side. Because
�k0,↓

L � is greater than �k0,↑
L �, there would be less chance for

incident spin-down electrons to be reflected. Hence, Is
R,refl

always contributes to negative spin current and is monotoni-
cally decreasing. When incident energy is low, Is

R,refl only
compensates part of Is

R,trans. When energy increases, Is
R,refl be-

comes dominant and there is a threshold � /� beyond which
Is

R starts to change sign.

IV. CONCLUSION

We have proposed a promising approach to generate spin
current nonmagnetically in the absence of charge current. A
quasi-1D channel with static Rashba and Dresselhaus spin-
orbit interaction is studied. Spin pumping is achieved by an
ac gate voltage to locally modulate the Rashba constant.
Pumped spin current can be attributed to both the spin-
preserved transmission and the spin-flip reflection processes.
These two terms contribute to opposite polarization of the
spin current.

It is found that in the low-density case ��F /�
2�, the
spin-preserved transmission is dominant and featured by
resonant inelastic scattering. In the high-density case
��F /��2�, there is a threshold beyond which spin current
begins to switch polarization. Furthermore, it is found that
the static Dresselhaus coefficient �0 as well as the dynamic
Rashba coefficient �1 can enhance the spin-flip process and
modify the threshold value of �F /�, at which the spin polar-
ization switches. In conclusion, we have demonstrated a fea-
sible way to control dynamically the intensity and polariza-
tion of the spin current via changing the strength of the ac-
biased gate voltage and tuning the driving frequency.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Council of the Republic of China through Contracts No.
NSC95-2112-M-001-068-MY3 and No. NSC97-2112-M-
239-003-MY3.

FIG. 3. �Color online� �a� Pumped spin current Is
R versus the

Fermi energy �related to the bottom of the first subband in Q1D
channel�. �0 is 0, 0.03, 0.06, and 0.12. Parameters �1=0.08,
�0=0.12, l=30, and �=0.002. �b� Is

R, Is
R,trans, and Is

R,refl are illus-
trated for �0=0.12 case in �a�.
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